Validation of CoaBC as a Bactericidal Target in the Coenzyme A Pathway of Mycobacterium tuberculosis
نویسندگان
چکیده
Mycobacterium tuberculosis relies on its own ability to biosynthesize coenzyme A to meet the needs of the myriad enzymatic reactions that depend on this cofactor for activity. As such, the essential pantothenate and coenzyme A biosynthesis pathways have attracted attention as targets for tuberculosis drug development. To identify the optimal step for coenzyme A pathway disruption in M. tuberculosis, we constructed and characterized a panel of conditional knockdown mutants in coenzyme A pathway genes. Here, we report that silencing of coaBC was bactericidal in vitro, whereas silencing of panB, panC, or coaE was bacteriostatic over the same time course. Silencing of coaBC was likewise bactericidal in vivo, whether initiated at infection or during either the acute or chronic stages of infection, confirming that CoaBC is required for M. tuberculosis to grow and persist in mice and arguing against significant CoaBC bypass via transport and assimilation of host-derived pantetheine in this animal model. These results provide convincing genetic validation of CoaBC as a new bactericidal drug target.
منابع مشابه
How pantothenol intervenes in Coenzyme-A biosynthesis of Mycobacterium tuberculosis.
Coenzyme A is an indispensable cofactor for all organisms and holds a central position in a number of pathways. Prokaryotic enzymes involved in the synthesis of CoA are quite different from their mammalian counterparts; hence, they are good targets for the development of antimicrobials to treat many diseases. There are antimicrobials that act by inhibiting CoA biosynthesis. It has been suggeste...
متن کاملIn-silico Metabolome Target Analysis Towards PanC-based Antimycobacterial Agent Discovery
Mycobacterium tuberculosis, the main cause of tuberculosis (TB), has still remained a global health crisis especially in developing countries. Tuberculosis treatment is a laborious and lengthy process with high risk of non compliance, cytotoxicity adverse events and drug resistance in patient. Recently, there has been an alarming rise of drug resistant in TB. In this regard, it is an unmet need...
متن کاملA Novel QSAR Model for the Evaluation and Prediction of (E)-N’-Benzylideneisonicotinohydrazide Derivatives as the Potent Anti-mycobacterium Tuberculosis Antibodies Using Genetic Function Approach
Abstract A dataset of (E)-N’-benzylideneisonicotinohydrazide derivatives as a potent anti-mycobacterium tuberculosis has been investigated utilizing Quantitative Structure-Activity Relationship (QSAR) techniques. Genetic Function Algorithm (GFA) and Multiple Linear Regression Analysis (MLRA) were used to select the descriptors and to generate the correlation QSAR models that relate the Mi...
متن کاملIn-silico Metabolome Target Analysis Towards PanC-based Antimycobacterial Agent Discovery
Mycobacterium tuberculosis, the main cause of tuberculosis (TB), has still remained a global health crisis especially in developing countries. Tuberculosis treatment is a laborious and lengthy process with high risk of non compliance, cytotoxicity adverse events and drug resistance in patient. Recently, there has been an alarming rise of drug resistant in TB. In this regard, it is an unmet need...
متن کاملDifferential protein expression in Mycobacterium tuberculosis susceptible and multidrug resistant isolates
Introduction: Infections by multidrug resistant Mycobacterium tuberculosis (MDR-TB) is a major public health challenge. Secretion of proteins by M. tuberculosis plays an important role in the pathogenesis of the bacterium. We compared the protein profiles of susceptible M. tuberculosis and MDR-TB isolates using proteomic analyses, namely two dimensional gel electrophoresis (2DE) and mass spectr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2016